27-05 .. Ji's

O ~— B\
CIRED .. Wl &
o ® - > ‘
Voorbereidingsc
‘ JSac
N _

D

DUTCHPOWER

\T o, t
r‘\
\ “..

”
A
-
'.

»

|
. . e
iander [ € eNexis | STEDIN® |
& @® O

7

+

C



27-05. °°5°°
CIRED
Voorbereidings

s e N\ AT Y =
p :.A-b' <« \\\‘\ .;: ‘7‘\ %—‘—*—'
< =SSR -

S SR R
*&3\3-_\\\&&&:_

NN
N




DUTCHPOWER

Ié\l for o
nergy Grids
2\ Erewy

Simon van Heeringen
Linda Schmeitz
Ensieh Hosseini
Jacco Heres

AMDZ1

SILO Al

« Bart Gips
 Emil Eirola



DUTCHPOWER Eewi -, M \\‘/////:{z %

Apparent Power Reactive
(VA) Power
(VAR)

S

S=+/(P2+Q?
P

Active, true or real power (Watts)



Data

* Active power (P) for large-scale customers for ~86,000 customers

* Reactive power (Q) for a set of 3,264 customers

* Reactive power measurements as a monthly total are available for ~30,000 customers
* Metadata about the customers
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Fig 1. For 12 random large customers for 12 months P vs Q.



Results
Model 1:
Assume constant power factor
PF =0.95
Model 2: Table 1 comparison of MAE and RMSE for each method
Fit optimal constant power factor
PF ~=0.98
Model 3: 16.86 41.67 PF=0.95
Constant estimate of Q for each month 12.52 27.87 PF~0.98
%aetatguegrilgﬁt;ocmamh the mOnthly total 6.8 9.95 Constant monthly Q to match monthly sums
|
4.10 7.77 Constant monthly PF to match monthly sums
MOdeI 4 :,F\(Ahﬁlszlzixizz:Ab::r:u;::uirrr:;rror

Monthly optimal PF

Defined by monthly measurements c i
2temonth 1Q(t)=ci

Q(t) = P(t) * (X t e month Q(t)) / (Z t e month P(t))
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Light- 3.56 4.94 (after re-scaling and combination with ' ' . : : 00 05 10

GBM baseline method) P mean(|SHAP value])

Figure shows how well the LightGBM model can predict Q/P for
every fifteen-minutes. SHAP values evaluates the impact of every
input feature and what we then see is that it's very much based on
this monthly Q / P value.
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* Traditional assumption of a fixed power factor does not hold for the subset of Dutch large customers in this
study.

* By employing different approaches, a fourfold reduction in estimation error compared to standard methods
was achieved.

* With a model using LightGBM the mean absolute error decreases 13% further. Machine learning approaches
offer valuable insights in what drives the reactive power and make more reliable predictions with fewer large
errors.

* Direct measurements of Q provide still the most accurate and reliable results, allowing for more efficient
system operation.
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